AAP ANAHEIM 2022 experience National Conference & Exhibition

American Academy of Pediatrics

DEDICATED TO THE HEALTH OF ALL CHILDREN®

Predicting Acute Kidney Injury in Pediatric Cardiac Surgery Patients Using Supervised Machine Learning

Matthew Nagy MPH, Ali Mirza Onder MD, David Rosen MD, Charles Mullett MD PhD, Lesley Cottrell PhD, Sherry Kanosky MSN, Larry Rhodes MD, Robert Gustafson MD, Orkun Baloglu MD Cleveland Clinic Lerner College of Medicine of Case Western Reserve University

October 10th, 2022

I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this presentation.

I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.

Pediatric Cardiac Surgery Increases AKI Risk

- 10-60% of pediatric cardiac surgery patients develop AKI (CSA-AKI)
 - 3 to 8 times Increased morbidity and mortality
- Markers identified to attempt to identify AKI at early stages
- AKI typically develops 48-72 hours post-op

 There is a need to better predict children at high risk of developing CSA-AKI in the early postoperative period

Machine learning (ML) may be a useful predictive tool

- ML is a branch of Artificial Intelligence that "learns" by leveraging data to improve performance on a specific task
- Supervised ML has several advantages
 - Ideal for tabular data
 - Feature extraction
 - Ability to handle linear and non-linear data
- Multiple ML models have been developed for predicting CSA-AKI in adults
- ML has not been utilized for CSA-AKI prediction in children

<u>AIM 1</u>

<u>AIM 2</u>

Predict CSA-AKI in children on POD2 using baseline, intra-op, and immediately post-op parameters using supervised machine learning

Identify the most important contributing factors to CSA-AKI development in children

Data Allocation and Predicted Outcome

- Retrospective chart review
- 402 patients total
 - 321 (80%) used to train the model
 - 81 (20%) used to test the model
- Outcome
 - No/Mild AKI (KDIGO 0-1) 86%
 - Moderate/Severe AKI (KDIGO 2-3) – 14%

(DIGO Stage	Serum Creatinine	Urine Output
1	 1.5-1.9 times baseline or ≥0.3 mg/dL increase 	- <0.5 mL/kg/h for 6h
2	- 2-2.9 times baseline	- < 0.5 mL/kg/h for 12h
3	 3 times baseline or Increase in serum creatine to ≥ 4 mg/dL or Initiation of renal replacement therapy 	 - < 0.3 mL/kg/h for 24h or - Anuria for ≥ 12h

Predictor Variables

Baseline

Age (months) Gender (M/F) Weight (kg) Term Delivery (Y/N) Gestation (weeks) Cyanotic Defect (Y/N) Pre-Op Serum Creatinine (mg/dL)

Intra-operative

Diuretic Intervention (Y/N) RACHS Score 1 2, 3 4, 5, 6 Surgery Time (min) Cardiac Bypass Time (min) Aorta Clamping Time (min)

Immediately Post-Operative

Post-Op Serum Creatinine (mg/dL) First 8 hour Urine Output (cc/kg/hr) Diuretic Intervention POD 0 (Y/N) Hematocrit (%) Albumin (g/dL) pH Lactate (mmol/L) Central Venous Pressure (mmHg) Vasoactive Inotropic Score Epinephrine Requirement (Y/N)

24 Input Features Included

AAP experience

Light GBM and SHAP were used for model development and analysis

Light GBM (ML Model)

- Ensemble based supervised machine learning
 - Trains on subset of data, and refines with subsequent models

SHAP (Feature Extraction)

- Game theory based algorithm to identify most important features
 - Makes the "black box" of AI explainable

The model showed high specificity but low sensitivity on the test set

With threshold of 0.5:

- AUC = 0.85
- Accuracy = 0.9 (imbalanced data: 14% with mod/severe AKI)
- Precision = 1.00
- Specificity = 1.00
- Sensitivity = 0.38

Model shows strongest predictors of AKI

- SHAP values = relative impact on model performance
- The top three predictors were
 - 1. Pre-op serum creatinine
 - 2. Length of surgery
 - 3. Post-op pH

Direction of impact also evaluated

- AKI on POD2 associated with:
 - Lower baseline creatinine
 - Longer surgery time
 - Lower pH
 - Elevated Lactate

AAPEXPERIENCE.ORG | #AAP2022

eature value

Relationships between top features and SHAP scores

Individual level predictions helps clinicians understand models rationale

Patient without AKI

Patient with AKI

Summary

We developed an explainable supervised machine learning model with high specificity for detecting CSA-AKI in children

Strengths

- Wide array of clinical predictive variables included
- Uniformity in data reporting and collection
- No data were imputed

Limitations

- Small ML sample size
- Lack of external validation
- Lack of "Gold Standard" marker for defining AKI

Next steps

- Include more patients to train model
- Evaluate performance on dataset from different hospital

For more information on this subject, see the following publications:

Singh, Sarvesh Pal. "Acute Kidney Injury after Pediatric Cardiac Surgery." *Annals of Cardiac Anaesthesia* 19, no. 2 (2016): 306–13. <u>https://doi.org/10.4103/0971-9784.179635</u>.

Song, Zhe, Zhenyu Yang, Ming Hou, and Xuedong Shi. "Machine Learning in Predicting Cardiac Surgery-Associated Acute Kidney Injury: A Systemic Review and Meta-Analysis." *Frontiers in Cardiovascular Medicine* 9 (2022): 951881. <u>https://doi.org/10.3389/fcvm.2022.951881</u>.

Onder, Ali Mirza, David Rosen, Charles Mullett, Lesley Cottrell, Sherry Kanosky, Oulimata Kane Grossman, Hafiz Imran Iqbal, et al. "Comparison of Intraoperative Aminophylline Versus Furosemide in Treatment of Oliguria During Pediatric Cardiac Surgery." *Pediatric Critical Care Medicine: A Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies* 17, no. 8 (August 2016): 753–63. <u>https://doi.org/10.1097/PCC.0000000000834</u>.

Acknowldements

Dr. Orkun Baloglu, Cleveland Clinic Childrens, Pediatric Critical Care

Dr. Ali Mirza Onder, Nemours Children's (formerly at WVU), Pediatric Nephrology

Entire study team at WVU

Hidden Slide: Table 1

AAPEXPERIEN

	Overall		Train (w/cross validation)		Test		P-Val
	Missing		Missing		Missing		
n		402		321		81	
BASELINE DEMOGRAPHICS							
Age, months, median [Q1,Q3]	0	6.0 [2.0,27.0]	0	6.0 [2.0,22.0]	0	9.0 [3.0,42.0]	0.
Gender, female, n (%)	0	177 (44.0)	0	141 (43.9)	0	36 (44.4)	0.
Weight, kg, median [Q1,Q3]	0	6.9 [4.4.12.2]	0	6.7 [4.3.10.5]	0	8.9 [5.2.16.0]	0.
Term Delivery, n (%)	0	281 (69.9)		221 (68.8)	-	60 (74.1)	0
Gestation weeks, median [Q1,Q3]	0	38.0 [37.0.40.0]	0	38 0 [37 0 40 0]	0	39 0 [37 0 40 0]	0
Cvanotic Defect. n (%)	0	164 (40.8)	Ū	133 (41.4)	Ū	31 (38.3)	0
Serum Creatinine, median [Q1,Q3]	0	03[0205]	0	03[0305]	0	03[0204]	0
INTRA-OPFRATIVE	Ŭ	0.5 [0.2,0.5]	Ū	0.5 [0.5,0.5]	U	0.5 [0.2,0.4]	Ū
Diuretic Intervention, n (%)	0	100 (11 0)		149 (46 1)		22 (20 E)	0
BACHS Score n (%)	U	180 (44.8)		148 (40.1)		32 (39.5)	0
1	0	90 (22-4)	0	75 (23.4)	0	15 (18 5)	U
2 3	Ŭ	266 (66 2)	U	203 (63 2)	U	63 (77.8)	
4. 5. 6		46 (11.4)		43 (13.4)		3 (3.7)	
Surgery Minutes, median [Q1,Q3]	i i	207.5				- ()	
	0	[140.0,303.0]	0	207.0 [140.0,301.0]	0	212.0 [142.0,305.0]	C
Cardiac Bypass Minutes, median [Q1,Q3]	0	68.0 [31.0,113.0]	0	69.0 [32.0,118.0]	0	67.0 [30.0,104.0]	C
Aorta Clamping Minutes, median [Q1,Q3]	0	34.0 [12.0,64.8]	0	34.0 [12.0,63.0]	0	35.0 [12.0,65.0]	0
POST-OP DAY 0							
Serum Creatinine, median [Q1,Q3]	0	0.4 [0.3.0.6]	0	0.4 [0.3.0.6]	0	0.4 [0.3.0.6]	C
First 8 hour Urine Output (cc/kg/hr), median	0	2.2 [1.4,3.7]	0	2.2 [1.4,3.7]	0	2.2 [1.4,3.4]	C
Hematocrit, median [Q1,Q3]	3	37.5 [33.9.41.5]	2	37.5 [34.3.42.0]	1	37,1 [32,6,40,4]	0
Albumin, median [Q1,Q3]	109	3.0 [2.7,3.3]	91	2.9 [2.7,3.2]	18	3.1 [2.8,3.3]	C
pH, median [Q1,Q3]	7	7.3 [7.3,7.4]	7	7.3 [7.3,7.4]	0	7.3 [7.3,7.4]	0
Lactate, median [Q1,Q3]	21	2.3 [1.5,3.8]	18	2.4 [1.5,4.0]	3	2.0 [1.5,3.1]	0
CVP, median [Q1,Q3]	13	10.0 [8.0,14.0]	12	10.0 [8.0,14.0]	1	10.0 [7.0,13.2]	0
Vasoactive Inotropic Score, median [Q1,Q3]	5	14.0 [7.0,22.0]	5	13.8 [6.9,23.0]	0	14.0 [7.5,19.0]	C
Epinephrine Requirement, n (%)		104 (25.9)		90 (28.0)		14 (17.3)	0
OUTCOMES		, ,				, -,	
Peritoneal Dialysis, n (%)	0	11 (2.7)	0	8 (2.5)	0	3 (3.7)	0
Death, n (%)	0	23 (5.7)	0	16 (5.0)	0	7 (8.6)	0
Mod-Severe AKI (KDIGO 2 or 3), n (%)	0	55 (13 7)	0	42 (13 1)	0	13 (16.0)	0